
HyDraw Documentation
Ricardo Euler

August 31, 2017

Contents
1 Introduction 3

2 HyDraw Data Format 4
2.1 Nodes and Hyperarcs . 4
2.2 Coordinate System . 5
2.3 Inhibit and continue drawing . 6
2.4 Fitting . 7
2.5 Show functionality . 7
2.6 SCIP’s Output for vbcTool . 7

3 Including Images 8

4 Node Information 8

5 Projects 9

6 Data Export 10
6.1 Png Export . 10
6.2 Amira Export . 11

7 List of tags and attributes 12

8 Shortcuts 14

9 Standard values 14

1

Please send the bugs you come across or any other annotation to: euler@zib.de

2

euler@zib.de

1 Introduction
HyDraw is a javaview-based tool for the visualization of hypergraphs. It mainly
consists of some simple commands to add nodes and hyperarcs and to possibly
delay their execution so you can display a hypergraph that changes over time.
HyDraw uses XML-based input.
To run Hydraw you have to use the startup script

$ HyDraw.sh

For more help type

$ HyDraw.sh -h

There are three ways of getting data into HyDraw: a) loading a file, b) reading
stdin, c) writing directly in the console window. The standard way of loading a
file into HyDraw is

$ HyDraw.sh myfile.xml

You can also open a file via the Menu→Load File option or by piping it at the
program start. Any other source that produces XML-code suitable for HyDraw
can also be piped. To read from stdin, write

$ cat myFile.xml | HyDraw.sh -s

Be aware that in this last case the Project functionality and options to open
and close files are not available.
Lastly, you can pass your commands directly to the integrated console win-
dow. Generally, everything that can be written inside an input file can also be
understood by the console.

Menu

Graph Display

Console

Figure 1: The HyDraw main window.

3

2 HyDraw Data Format
The input of HyDraw is XML-based. This means that there is a special XML
schema for HyDraw.
A HyDraw graph file has to have the following structure.

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<HyDraw>
<!-- Here goes all of your code-->
</HyDraw>

We now have a deeper look in what can be done in the body of this XML-
file. Since commands are processed consecutively, you have to make sure that
everything is defined at the time you refer to it.

2.1 Nodes and Hyperarcs
First of all, nodes should be added to the graph. This can be done with

<Node ID="0" color="#ff00ff" size="1"
x="2" y="0" z="4"/>

You can also have a node in polar coordinates:

<Node ID="1" color="black"
x="0" y="5" angle="3.14"/>

But you have to specify if you want to display the polar or Cartesian coordinates.
The standard is Cartesian. See Section 2.2. Now, we define a first hyperarc by

<Hyperarc ID="0" color="blue" size="0.5" cost="4.5">
<Link head="0" tail="1"/>

</Hyperarc>

To create a real hyperarc more nodes are needed. The missing attributes are
set to standard values.

<Node ID="2" x="0" y="0" z="4" />
<Node ID="3" x="3" y="3" z="3" visible="false" />
<Hyperarc ID="1" cost="4.54">

<Link head="0" tail="1"/>
<Link head="2" tail="3"/>

</Hyperarc>

Note that a hyperarc has to have the same amount of head and tail nodes and
that it is not allowed to contain the same node twice.
At some point you might want to remove some nodes and hyperarcs or to change
some of their properties. For this purpose, you can use the following commands.
Deleting a node will also delete all associated hyperarcs.

<deleteHyperarc ID="0"/>
<deleteNode ID="0"/>

If you want to delete all nodes and hyperarcs, respectively, you can use the
resetGraph command.

<resetGraph/>

4

If you just want to change properties of nodes and hyperarcs you can again just
invoke the node and hyperarc command, respectively.

<Node ID="2" color="#00000f"/>
<Node ID="0" size="0"/>
<Hyperarc ID="1" value="0" color="#ff00ff" size="3"/>

The IDs and the Links contained in a hyperarc cannot be changed.
If the color or size of a node or hyperarc was not set, HyDraw will use a global
value that will be one of values found in Section 9 by default. If you want to
change the defaults, you can use the global tag in the following way.

<global nodecolor="#00ff00" hyperarccolor="#00ff00" nodesize="1"
hyperarcsize="1"/>

However, this does not affect nodes and hyperarcs with specified values and to
this point there is no way to bring them back to take the global value.
You can reset the global values to their defaults by invoking

<restoreDefaultSettings/>

2.2 Coordinate System
We have already seen how to create nodes and how to specify their Cartesian
coordinates. However, HyDraw allows you to employ more coordinate systems.
Those that are available can be found in the table below. A node will only
appear in a certain coordinate system if all necessary coordinates have been
specified. The coordinate system can be changed by

<CoordinateSystem type="xyz"/>

Naturally, a hyperarc will only be drawn if all his nodes have a specified location
in the current coordinate system. The tree coordinates are an exception where
no user-defined hyperarcs are drawn. Instead an arc is drawn for every parent-
child-relation. In this case the concrete locations of the nodes will be calculated
by HyDraw. In the following example a node is created with coordinates for
every coordinate system.

<!--Creating the node without any coordinates.-->
<Node id="1"/>
<!-- Setting coordinates for the two and three dimensional

cartesian coordinate systems.-->

xyz 3-dimensional Cartesian coordinates in x, y, z
xy 2-dimensional Cartesian coordinates in x, y
xz 2-dimensional Cartesian coordinates in x, z
yz 2-dimensional Cartesian coordinates in y, z
polar2d polar coordinates in x and φ
polar3d polar coordinates in x, φ and ρ
cylindric cylindric coordinates in x, φ, z
tree coordinates specified by parent-child relations

Figure 2: the different coordinate systems

5

(a) cylindric (b) polar (c) xz

Figure 3: The same data in different coordinate systems.

<Node id="1" x="1" y="1" z="1"/>
<!-- Setting polar coordinates. -->
<Node id="1" x="1" phi="1"/>
<!--The cylindric coordinate system uses the polar coordinates

and adds a z-axis to them. -->
<Node id="1" z="1"/>
<!--Extending the polar coordinates to the third dimension. -->
<Node id="1" rho="1"/>
<!--Setting a node as its own parent will make it a root node in

the tree. -->
<Node id="1" parent="1"/>
<!--A second node that has the previous node as its parent. -->
<Node id="2" parent="1"/>

When using polar or cylindric coordinates the x-coordinate is used as radius.
Of course all those values can also be set at once:

<Node id="1" x="1" y="1" z="1" phi="1" rho="1" parent="1"/>

The coordinate system tag contains the xShift and hStretch attributes. Both
do only affect polar or cylindric coordinate systems, respectively. The xShift
is a constant value that is added to the radius of each node and the hStretch
stretches the hypergraph along the z-axis in the cylindric coordinate system.
The value for hStretch has to be greater than zero. Here is an example that
does increase the radius by one and stretches at the Z-axis by a factor of two.

<CoordinateSystem xShift="1" hStretch="2"/>

You can use the different coordinate systems to show the same data in different
perspectives. In the following example the x,z and phi coordinates were set.

2.3 Inhibit and continue drawing
HyDraw processes every command separately. Especially, this means that nearly
every command will invoke a costly repaint of the graph display. If you draw
many nodes and hyperarcs at once, this may cause a great slowdown. To avoid
this, you can use

<inhibitDrawing/>
<!-- many commands -->

6

<continueDrawing/>

to inhibit repaints of the canvas, process many commands and then allow draw-
ing again when you’re done. Of course, you can also use this if you just want
to make multiple changes to the graph model visible at once.

2.4 Fitting
It may happen that you specify coordinates that lie outside the visible part of
the graph display. In this case you can hit the f key to scale and center your
graph in the middle of the display. You can also do this with an XML command.
If you do not want to to take care of if this yourself you can tell HyDraw to
automatically fit the graph in the right position.

<!--center and scale graph in display area -->
<fit/>
<!--activate automatic fitting -->
<autofiton/>
<!-- deactivate automatic fitting -->
<autofitoff/>

Fitting can also be controlled via Menu→Load File.

2.5 Show functionality
You might want to use HyDraw not just to draw your hypergraph, but to show
some kind of steps that led to it in real time. For this purpose, you can use
the sleep-tag. It will pause the processing of the input for the given amount of
time. The following code snippet draws a node, waits for five seconds and then
changes its color.

<Node id="1" x="1" y="1" z="1"/>
<sleep milliseconds="5000"/>
<Node id="1" size="3"/>

A similar effect can be obtained by the block command.

<block/>

Here, the processing of your input is stopped until you press the space-bar with
focus in the graph display.
You can also directly interrupt and continue the visualization by pressing backspace
and space, respectively.

2.6 SCIP’s Output for vbcTool
In addition to the standard input format, HyDraw is also able to process the
output SCIP generates to visualize its branch-and-bound tree with vbcTool. For
information on this format we refer to [2] and [3]. Be aware, however, that not
the whole vbcTool-input can be read but just the part of it that is used by SCIP.
HyDraw adds a search functionality that can be used to highlight, for example,
some variables in the search tree. When reading files HyDraw automatically
detects which input it is given, but when reading from stdin you have to set the
-v flag. For example,

7

$ cat myvbc.dat | HyDraw.sh -v -s

3 Including Images
Imagine the nodes of your graph are all the cities in Germany. You may want to
include a map of Germany(i.e. an image) to the graphs display to emphasize it.
See Figure 4 for an example. The image is drawn as a texture on a quadrilateral
in the canvas. If the image should be drawn in 3D space you have to give the
coordinates of the quadrilaterals upper left, lower left and lower right corner
since a hyperplane is defined by three points. For 2D it is enough to give the
upper left and lower right corner. Specifying the lower left corner will have no
effect. The code can look as follows

<image name="my_img" path="folder/file.xml" ulx="0" uly="1" ulz=
"0" llx="0" uly="0" ulz="0" lrx="1" lry="0" lrz="0"/> <!--
xyz coordinates-->

or

<image path="folder/file.xml" ulx="0" ulphi="1" ulz="0" llx="0"
ulphi="0" ulz="0" lrx="1" lrphi="0" lrz="0"/> <!-- cylindric
coordinates-->

The name attribute is optional. If it is not set, the path will be used as name.
You can make an image visible or invisible, respectively, with the following code.

<image name="my_img" visible="bool"/> <!-- bool can be false/
true or 0/1-->

It is not possible to change the coordinates of an already created image. The
attempt will result in an error message. Images can be removed with

<removeImage name="my_img"/>
<resetImages/> <!-- deletes all images-->

In addition, it is possible to set a background image, using the command

<backgroundImage path="back3.png"/>

4 Node Information
You can pass your own informations to nodes in HyDraw. They will be visible if
you click at a node after starting the pick-vertex-mode(You can choose it after
right-clicking in the graph display). Additionally, the nodes ID, its size and
color and the hyperarcs it is in will be displayed.
To set the information contained in a node invoke

<Node id="1" info="some information"/>

This overwrites all previously stored information. If you want to add information
you have to use

<Node id="1" addInfo="some additional information"/>

8

Figure 4: A graph that lies on a map of Germany. The graphs shows time-
expanded train rotations through the depicted train network. Map data was
taken from http://www.openstreetmap.org - Published under ODbL.

You can use the following escape characters to format your information text:

\n new line
\t tabulator
\b backspace

It is also possible to set labels to nodes which are visible in the graph display.
You can do this by

<Node id="1" label="someText"/>

Labels can be activated and deactivated, respectively, with the following two
tags.

<showNodeLabels/>
<hideNodeLabels/>

5 Projects
HyDraw allows you to wrap up a collection of input files in a project. This way
you can assemble different HyDraw visualizations to a presentation.
You can load a project file by selecting “Open Project” in the menu bar. Using
the left and right arrow keys or the respective buttons the input files can be
browsed through.
Project files require the following syntax:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<HydrawProject>

9

http://www.openstreetmap.org/
http://opendatacommons.org/licenses/odbl/

Figure 5: The node information window

<hydrawFile path="hydrawFile_One.xml"/>

<hydrawFile path="hydrawFile_Two.xml"/>

<hydrawFile path="some_dir/hydrawFile_Three.xml"/>

</HydrawProject>

HyDraw will look for those files in your current working directory and in trunk
and trunk/data. You can add your own directories to the search path by using:

<base path="/my/base/path/"/>

6 Data Export
6.1 Png Export
It is possible to save the graph display as .png image. Go to Menu→PNG.
You can then choose the resolution of your picture. Changing the resolution
does affect the appearance of the graph in terms of the thickness of nodes and
hyperarcs. If you want to save .png’s in a high resolution you have to make sure
during program start, that the VM allocates enough memory. This can be done
by starting HyDraw with

$ java -jar -Xms<size> HyDraw_1.0.jar

There is also a XML-tag that does the same. Write

10

<takeImage path="your/path"/>

to make a .png and store it under path given as attribute. You can use this to
make a series of multiple pictures to document changes in your hypergraph. So
far, choosing the resolution is not supported.

6.2 Amira Export
You can export the hypergraph model of HyDraw to a file that can be under-
stood by Amira, see [5]. Amira offers far more enhanced ways to visualize things
than HyDraw does. Just go to Menu→Amira Export and choose your target
directory. This export functionality is still in a test phase and only guaranteed
to work for the cylindric and polar coordinates.

11

7 List of tags and attributes
The following list collects all tags and attributes with a short description.

HyDraw Root tag for HyDraw files
CoordinateSystem Options on the coordinate system.
type String Choose the coordinate system.
hStretch double Set horizontal stretch.
rShift double Set radius shift.
node Create or change node.
id int Pass an integer as ID of this node.
color Hex Set this nodes color. You can pass a hex-

adecimal color code.
size double Set the size of the node to the passed double.
x double Set the nodes x-coordinate to the passed

double.
y double Set the nodes y-coordinate to the passed

double.
z double Set the nodes z-coordinate to the passed

double.
phi double Set the angle for polar coordinates.
info String Set the string as information to the node.
addInfo String Add the string to the nodes information.
label String Set a label to be displayed next to the node.
hyperarc Create or change hyperarc.
ID String Give this hyperarc an integer as identifier.
color Hex Set this nodes color. You can pass a hex-

adecimal color code.
size double Set the size of the hyperarc to the passed

double.
link Define a link.
tail int Set a node as tail of this link by passing its

ID.
head int Set a node as head of this link by passing

its ID.
sleep Let the processing of the input sleep for a

while.
milliseconds int Stop processing of the file for the passed

amount of seconds.
block Stop processing until space was pressed.
deleteNode Delete the node.
id int Specify the node for deletion.
deleteArc Delete the hyperarc.
id Specify the hyperarc for deletion.
global Change properties of nodes and hyperarcs

globally.

12

nodecolor Hex Set the global node color.
nodesize double Set the global node size.
arccolor Hex Set the global hyperarc color.
arcsize double Set the global hyperarc size.
label bool Set visibility of node labels to true(1) or

false(0).
resetGraph Delete the whole graph.
reset Delete the whole graph and all images.
inhibitDrawing Inhibit drawing.
continueDrawing Continue drawing.
autofiton Graph is scaled and centered to fit to the

display after every command.
autofitoff Disable autofit.
fit Scale and center graph in the middle of the

display.
backgroundImage Use a png image as background.
path String If empty a white background is used.
image Place a png image freely in the canvas.
ulx double Set x coordinate of upper left corner.
uly double Set y coordinate of upper left corner.
ulz double Set z coordinate of upper left corner.
ulphi double Set phi coordinate of upper left corner.
llx double Set x coordinate of lower left corner.
lly double Set y coordinate of lower left corner.
llz double Set z coordinate of lower left corner.
llphi double Set phi coordinate of lower left corner.
lrx double Set x coordinate of lower right corner.
lry double Set y coordinate of lower right corner.
lrz double Set z coordinate of lower right corner.
lrphi double Set phi coordinate of lower right corner.
visible bool Set visibility to true(1) or false(0)
name String Set an intern name for the image.
path String Path to the image file.
removeImage Deletes image.
name String Name of the image that should be deleted.
removeImages Deletes all images.
takeImage Make a picture of the graph display.
path String Stores picture in the given file.
restoreDefaultSettings Restores default settings.
filename You can optionally pass have pass the name

of the file you loaded.

13

8 Shortcuts
The following shortcuts are available.

Left Arrow previous project file
Right Arrow Next project file
Space Continue visualization
Backspace Pause visualization
o Rotate graph
v Rotate graph with fixed vertical

axis
s Scale graph
t Translate graph parallel to display
z Translate graph back and forth
c Center camera on graph
f Fit graph into display
r Reset viewer to default

9 Standard values
Most of the XML-attributes are not mandatory. If you do not use them, one of
the following standard values will be used. There are also commands to change
those values, see Section 7.

property value
node size 1.0
node color #ff0000
hyperarc size 1.0
hyperarc color #000000
coordinate system xyz
xShift 0
hStretch 0
autofit off
nodelabels hidden

References
[1] DragonConsole. https://github.com/bbuck/DragonConsole.
[2] Gerald Gamrath et al. The SCIP Optimization Suite 3.2. eng. Tech. rep.

15-60. Takustr.7, 14195 Berlin: ZIB, 2016.
[3] Sebastian Leipert. vbcTool. http://www.informatik.uni-koeln.de/ls_

juenger/vbctool/. 2000–2004.
[4] Konrad Polthier. JavaView. http://www.javaview.de/. 1997–2016.
[5] Detlev Stalling, Malte Westerhoff, and Hans-Christian Hege. “Amira: a

Highly Interactive System for Visual Data Analysis”. In: The Visualization
Handbook. Elsevier, 2005, pp. 749–767.

14

https://github.com/bbuck/DragonConsole
http://www.informatik.uni-koeln.de/ls_juenger/vbctool/
http://www.informatik.uni-koeln.de/ls_juenger/vbctool/
http://www.javaview.de/

	Introduction
	HyDraw Data Format
	Nodes and Hyperarcs
	Coordinate System
	Inhibit and continue drawing
	Fitting
	Show functionality
	SCIP's Output for vbcTool

	Including Images
	Node Information
	Projects
	Data Export
	Png Export
	Amira Export

	List of tags and attributes
	Shortcuts
	Standard values

